

Contraction Contractico Contractico Contractico Contractico Contractico Contra

Overview of Lero Research

Dr Ita Richardson June 2015

Limerick

Lero: A National Research Centre

- Funded as an SFI CSET in 2005, extended in 2011. Awarded over €60M in research funding from multiple sources
- Currently 40+ academics, 38 researchers and c. 70 PhD students
- Output to date: 324 journal papers,
 25 books and 672 conference papers
- Worked with over 100 software companies in Ireland and the EU
- Recently announced funding as an SFI Research Centre 2015-2020 at a 50% greater scale with two new academic members

🗢 Lero

27 July 2015

The Lero Research Centre Team

Lero Hub & Spoke Research

Hub comprises four core research areas

Contract Con

• Spokes focus on key priority areas addressing challenges faced by industry partners

Lero Metrics: 5Ps

Publications

- Quantity->
 Quality
- Top journal/confer ences
- Impact/ citations

Personnel

- Postdocs
- PhDs
- Industrybased Phds (D.Eng)

Parnas Fellow

Device and Healthcare Research Centre Research

Dr Ita Richardson June 2015

Software embedded in Medical Devices

Software within Medical Devices Up to 70% of budget on software related activities

Medical Device Software -External

Software in Medical Device production lines

Healthcare software

Software manipulating Clinical data Health Information Systems

RESEARCH CHALLENGES (SOFTWARE) Medical Devices and Healthcare

- How can Software Engineering processes comply with regulations?
- How can we ensure the correct use and implementation of software in healthcare situations?
- How can we Connect software, technology, data and processes for use by differing stakeholders?

RESEARCH CHALLENGES (SOFTWARE) Medical Devices and Healthcare

- How can Software Engineering processes comply with regulations?
- How can we ensure the correct use and implementation of software in healthcare situations?
- How can we Connect software, technology, data and processes for use by differing stakeholders?

EU Directives - 2007, 1993

- Software in its own right, when specifically intended by the manufacturer to be used for one or more of the medical purposes set out in the definition of a medical device, is a medical device. Software for general purposes when used in a healthcare setting is not a medical device
- Image: 'medical device' means any instrument, apparatus, appliance, material or other article, whether used alone or in combination, including the software necessary for its proper application intended by the manufacturer to be used for human beings for the purpose of: diagnosis, prevention, monitoring, treatment or alleviation of disease injury or

Effect on Software Industry

- Standards not developed specifically for software development
- Software Engineers must be aware of regulatory requirements
- Software Engineers must be able to adapt software process to support regulatory requirements
- Software process models have not been developed based on regulatory requirements
 - Capability Maturity Model Integrated
 - ISO15504

iew

Software Quality Improvement

(A) CMMI Practices

CMMI practices not mandatory for medical device standards

(D) CMMI practices not mandatory but with potential benefit to medical device software (B) CMMI practices that are mandatory for medical device standards Medical Device regulations

> (C) Non-CMMI practices that are mandatory for medical device standards

Regulations

- Code of Federal Regulations Title 21
 Section 820 (21CFR820 2009)
 - Food & Drug Administration (FDA) Regulation
- Sec 820.181 Device Master Record
 - Equivalent to Requirements Specification
- Sec 820.184 Device History Record
 - Class I software traceability and identification

Requirements Development SG1 Develop Customer Requirements

No.	Deliverable	Legislation	
SP 1.1	Documented methods for need	21CFR820 – Section 181/184	
	encitation		
		Record(DMR) / Device History	
		Record(DHR) – Production	
		process specifications	
SP 1.2	Customer Requirements	DMR	
SP 1.2	Customer constraints on the	DMR	
	conduct of verification		
SP 1.2	Customer constraints on the	DMR	
	conduct of validation		

RD: SG1 Checklist

SP 1.1	Are stakeholder needs being recorded?	
SP 1.1	Have business goals being documented?	
SP 1.1	Have any relevant legal requirements been elicited?	
SP 1.2	Is there any missing information which at the end of the requirements consolidation which needs to be addressed? There should be none.	
SP 1.2	Are all conflicts resolved, and the decisions and reasoning documented?	

Risk Management

Goal	CMMI®	CMMI [®]	Additional
	Activities	Activities	Activities required
		required to meet	to meet regulatory
		regulatory	requirements)
		requirements	
SG 1: Prepare for risk management	6	6	10
SG 2: Identify and Analyse Risks	9	4	4
SG 3: Mitigate Risks	9	6	6
Sub Total	24	16	20
GG2: Institutionalise a Managed	10	6	0
Process			
GG3: Institutionalise a Defined	2	0	0
Process			
GG4: Institutionalise a	2	0	0
Quantitatively Managed Process			
GG5: Institutionalise an Optimising	2	0	0
Process			
Total	40	22	20

🗘 Lero

RESEARCH CHALLENGES (SOFTWARE) **Medical Devices and Healthcare** How can Software Engineering processes comply with re Medical ct use and How can we Device implementat healthcare **Standards** situations? combined **MDevSPICE** How can we with e, tecnnology, data ering stakeholders? and process Software **Standards**

RESEARCH CHALLENGES (SOFTWARE) Medical Devices and Healthcare

- How can Software Engineering processes comply with regulations?
- How can we ensure the correct use and implementation of software in healthcare situations?
- How can we Connect software, technology, data and processes for use by differing stakeholders?

Published Research

 Medical Inquiries, Academic Research, Standards and Regulations (Medical and Software)

Use of Software & Technology

 Participant observation, Study of Documentation, Interviews, Focus Groups, Workshops

Results: Hospital Information Systems

- Information systems used hospital wide
- Information systems used specifically by single departments
- Information systems are used personally by clinicians
- No integrated electronic patient record (EPR)

Primary medical record is paper based

Results: Clinicians

- Healthcare needs to evolve with technology
- HOWEVER Clinicians do not understand:
- Quality Requirements in the Clinical Environment for use of technology
- Regulations regarding the development of software which includes excel and mobile phone apps
- Risk involved in manipulating data from a certified Medical Device

iew.

Software Quality Improvement

Hospital Quality Assurance Program: H-QAP

Structure Layer: Implementation

- Focus on Radiology Department
 - Correct diagnosis within acceptable timeframe
 - Radiation ALARA principle
 - As Little As Reasonably Achievable
- Quality Requirement
 - Software engineers ensures MD software correct
 - Physicist calibrates MD
 - Radiographer uses MD correctly
 - Radiologist reviews and reports diagnosis

Set expected standards

Quality Assurance Layer: Implementation

- Focus on Shoulder X-Ray measures regarding:
 - Policies regarding angle, contrast, view
 - Standards for shoulder imaging
- Defining data collection
 - Percentage of incorrectly
 - taken x-rays
 - Number of times patients were x-rayed
- Data reporting defined

Co Lero

Departmental shoulder protocol

Axial view

Y-view

Garth view

H-QAP Layers and Protocols

H-QAP Implementation: Improvement from 54% to 95% compliance in X-Ray department

🗢 Lero

RESEARCH CHALLENGES (SOFTWARE) Medical Devices and Healthcare

- How can Software Engineering processes comply with regulations?
- How can we ensure the correct use and implementation of software in healthcare situations?

How can and proce Implementing Quality in Health care Software

Software Quality Management Systems

RESEARCH CHALLENGES (SOFTWARE) Medical Devices and Healthcare

- How can Software Engineering processes comply with regulations?
- How can we ensure the correct use and implementation of software in healthcare situations?
- How can we Connect software, technology, data and processes for use by differing stakeholders?

Smart Travel

Smart Health (Connected)

🗘 Lero

How does 'Smart' happen?

MODELLING

TAILORING

-

HUMAN COMPUTER INTERACTION

Implementation: Architecture

¢Lero

Implementation: Decision Support System

System Evaluation: 19 experts

🗢 Lero

RESEARCH CHALLENGES (SOFTWARE) Medical Devices and Healthcare

How can comply w
How can implementation implementations?

How can we Connect software, technology, data and processes for use by differing stakeholders?

Hospital Quality Assurance Program

¢ Lero

Hospital Quality Assurance Program

ouise Reid, PhD student, developed a Hospital Quality identified that technology would help them to change mactice. Now, through the use of sensor mats and

Connected Health into the future!

Regulation will be important!

If you want to develop Software for Connected Health solutions

- Inter-disciplinary team
- Qualified (experienced) Software Engineer on your team
- User-centric
 - Not Technic-centric!
- Understand whether they are 'wellness' or 'Medical Device'

> Build in (allowance for) Regulations from the

RESEARCH CHALLENGES (SOFTWARE) Medical Devices and Healthcare

- How can Software Engineering processes comply with regulations?
- How can we ensure the correct use and implementation of software in healthcare situations?

Acknowledgement

This work was partially supported by Science Foundation Ireland Research Centre grant 13/RC/2094, by ARCH – Applied Research in Connected Health funded by Enterprise Ireland / IDA and by European Commission through TRANSFoRm, DG INSFO (FP7 247787).

